software engineering

Software engineering (SE) is the application of a systematic, disciplined, quantifiable approach to the design, development, operation, and maintenance of software, and the study of these approaches; that is, the application of engineering to software. In layman's terms, it is the act of using insights to conceive, model and scale a solution to a problem. The first reference to the term is the 1968 NATO Software Engineering Conference and was meant to provoke thought regarding the perceived "software crisis" at the time. Software development, a much used and more generic term, does not necessarily subsume the engineering paradigm. The generally accepted concepts of Software Engineering as an engineering discipline have been specified in the Guide to the Software Engineering Body of Knowledge (SWEBOK). The SWEBOK has become an internationally accepted standard ISO/IEC TR 19759:2005.[7]
For those who wish to become recognized as professional software engineers, the IEEE offers two certifications (Certified Software Development Associate and Certified Software Development Professional). The IEEE certifications do not use the term Engineer in their title for compatibility reasons. In some parts of the US such as Texas, the use of the term Engineer is regulated only to those who have a Professional Engineer license. Further, in the United States starting from 2013, the NCEES Professional Engineer exam will be available for Software Engineering.

History

When the first digital computers appeared in the early 1940s, the instructions to make them operate were wired into the machine. Practitioners quickly realized that this design was not flexible and came up with the "stored program architecture" or von Neumann architecture. Thus the division between "hardware" and "software" began with abstraction being used to deal with the complexity of computing.
Programming languages started to appear in the 1950s and this was also another major step in abstraction. Major languages such as Fortran, ALGOL, and COBOL were released in the late 1950s to deal with scientific, algorithmic, and business problems respectively. E.W. Dijkstra wrote his seminal paper, "Go To Statement Considered Harmful", in 1968 and David Parnas introduced the key concept of modularity and information hiding in 1972 to help programmers deal with the ever increasing complexity of software systems. A software system for managing the hardware called an operating system was also introduced, most notably by Unix in 1969. In 1967, the Simula language introduced the object-oriented programming paradigm.
These advances in software were met with more advances in computer hardware. In the mid-1970s, the microcomputer was introduced, making it economical for hobbyists to obtain a computer and write software for it. This in turn led to the now famous Personal Computer (PC). The Software Development Life Cycle or SDLC was also starting to appear as a consensus for centralized construction of software in the mid-1980s. The late 1970s and early 1980s saw the introduction of several new Simula-inspired object-oriented programming languages, including Smalltalk, Objective-C, and C++.
Open-source software started to appear in the early 90s in the form of Linux and other software introducing the "bazaar" or decentralized style of constructing software. Then the World Wide Web and the popularization of the Internet hit in the mid 90s, changing the engineering of software once again. Distributed systems gained sway as a way to design systems, and the Java programming language was introduced with its own virtual machine as another step in abstraction. Programmers collaborated and wrote the Agile Manifesto, which favored more lightweight processes to create cheaper and more timely software.
The current definition of software engineering is still being debated by practitioners today as they struggle to come up with ways to produce software that is "cheaper, better, faster". Cost reduction has been a primary focus of the IT industry since the 1990s. Total cost of ownership represents the costs of more than just acquisition. It includes things like productivity impediments, upkeep efforts, and resources needed to support infrastructure.

Profession

Legal requirements for the licensing or certification of professional software engineers vary around the world. In the UK, the British Computer Society licenses software engineers and members of the society can also become Chartered Engineers (CEng), while in some areas of Canada, such as Alberta, Ontario, and Quebec, software engineers can hold the Professional Engineer (P.Eng) designation and/or the Information Systems Professional (I.S.P.) designation. In Canada, there is a legal requirement to have P.Eng when one wants to use the title "engineer" or practice "software engineering". In the USA, beginning in 2013, the path for licensure of software engineers will become a reality. As with the other engineering disciplines, the requirements consist of earning an ABET accredited bachelor’s degree in Software Engineering (or any non-ABET degree and NCEES credentials evaluation), passing the Fundamentals of Engineering Exam, having at least four years of demonstrably relevant experience, and passing the Software Engineering PE Exam. In some states, such as Florida, Texas, Washington, and other, software developers cannot use the title "Professional Engineer" unless they are licensed professional engineers who have passed the PE Exam and possess a valid licence to practice.[citation needed] This license has to be periodically renewed, which is known as continuous education, to ensure engineers are kept up to date with latest techniques and safest practices.
The IEEE Computer Society and the ACM, the two main US-based professional organizations of software engineering, publish guides to the profession of software engineering. The IEEE's Guide to the Software Engineering Body of Knowledge - 2004 Version, or SWEBOK, defines the field and describes the knowledge the IEEE expects a practicing software engineer to have. Currently, the SWEBOK v3 is being produced and will likely be released in mid-2013. The IEEE also promulgates a "Software Engineering Code of Ethics".

Employment

In 2004, the U. S. Bureau of Labor Statistics counted 760,840 software engineers holding jobs in the U.S.; in the same time period there were some 1.4 million practitioners employed in the U.S. in all other engineering disciplines combined. Due to its relative newness as a field of study, formal education in software engineering is often taught as part of a computer science curriculum, and many software engineers hold computer science degrees.
Many software engineers work as employees or contractors. Software engineers work with businesses, government agencies (civilian or military), and non-profit organizations. Some software engineers work for themselves as freelancers. Some organizations have specialists to perform each of the tasks in the software development process. Other organizations require software engineers to do many or all of them. In large projects, people may specialize in only one role. In small projects, people may fill several or all roles at the same time. Specializations include: in industry (analysts, architects, developers, testers, technical support, middleware analysts, managers) and in academia (educators, researchers).
Most software engineers and programmers work 40 hours a week, but about 15 percent of software engineers and 11 percent of programmers worked more than 50 hours a week in 2008. Injuries in these occupations are rare. However, like other workers who spend long periods in front of a computer terminal typing at a keyboard, engineers and programmers are susceptible to eyestrain, back discomfort, and hand and wrist problems such as carpal tunnel syndrome.
The field's future looks bright according to Money Magazine and Salary.com, which rated Software Engineer as the best job in the United States in 2006. In 2012, software engineering was again ranked as the best job in the United States, this time by CareerCast.com.

 





 


 

No comments:

Post a Comment